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Abstracr We have used an em3 diagonalization technique to explore the gmund-state phase 
diagram of the two-dimensional Holstein-1-J model neaT half filling. The nature of the ground 
state is analysed, calculating self consistently the I& lattice distortions, on-site spin and charge 
densities, as well as the magnetic svuchlre form factor. We demonswte that doped holes tend 
Io form hole-polaron or bipolmn stales. Compared Io lhat in the unconelated model (spinless 
fermions), ule critical elemon-phonon coupling strength for the self-papping transition of the 
doped charge emiers is considerably reduced by the antifemmagnetic exchange interaction. 
The relevance Io the cupraIe superconducm is discussed. 

The importance of both strong antiferromagnetic Coulomb correlations [ l ]  and strong 
electron-phonon (Ep) interactions [2] has become increasingly recognized as being essential 
in understanding the superconducting and the unusual ‘normal’ state properties of high-Tc 
materials. Recent ion channelling [3] and neutron scattering [4] experiments give evidence 
for large anharmonic lattice fluctuations in several of the cuprates, where the coupling of 
the so-called apical ‘breathing’ modes to the in-plane elecmn system leads to local (rather 
than global) phonon-driven charge instabilities. Photoinduced absorption measurements in 
La2-,SrxCu04-s and YBa2Cu3q-6 are also an indication that a self-localized struchual 
distortion is present around the doped charge caniers [5]. Based on these experimental 
findings the existence of polaronic or bipolaronic electronic states was heavily debated [6] ,  
where in the cuprate superconductors the (bi)polarons were expected to be rather ‘large’ 
[7-91. 

The theoretical difficulties result from the fact that at low doping level the high-T, 
systems are close to an antiferromagnetic Mott insulating state [lo], i.e. we are faced with 
the question of how the EP effects are influenced by the strong electronic correlations. Bong 
and Schiittler [ I  I ,  121 pointed out that an enhanced tendency towards polaron formation can 
be understood as a consequence of a pre-existing self-localization of the charge caniers due 
to their interaction with the antiferromagnetic fluctuating Cu2+-spin background. On the 
other hand, the EP coupling may lead to a polaronic “wing of the effective bandwidth 
and might, therefore, drive the system further into the strongly correlated regime 191. Let 
us emphasize at this point that the investigation of such strongly coupled EP systems is 
of fundamental importance, not only in connection with high-T, copper oxides. There are 
other long-standing problems which have attracted renewed attention, e.g. the dynamics 
of the self-trapping transition [13], or the commensurateincommensurate phase transitions 
in low-dimensional chargedensity-wave (mw) systems such as the MX chain compounds 
[141. 
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In order to address some of these issues from a microscopic point of view, in this 
paper we will study the two-dimensional (m) t-J model with additional Holstein-type [I51 
EP interaction in the adiabatic limit by means of a Lanczos diagonalization method. First 
exact results for the ground state of the single-hole Holstein-t-J model have recently been 
obtained by the authors [I61 on finite lattices up to 18 effective sites at a few characteristic 
coupling strengths. Here, we restrict the size of the model to the tilted m x m lattice 
with periodic boundary conditions (cf. figure I(Q)) in order to map out the complete phase 
diagram of the Holstein-t-J model with one and two holes. Of course, we have checked 
with the 16- and 18-site lanice that the qualitative features of the following results remain 
unchanged. 

' I  

4 

! 

Figure 1. (a )  The tilled effective ten-site cluster used in this work. where periodic boundary 
wnditions applied at the dolled lines. (b) Definition of the harmonic laltice distortions A:" 
for a single CuOa unit (cf. Ihe h k e n  square in (0)). ?Be filled and open circles represent 
w p w r  and oxygen respectively. 

The Holstein-r-J system is defined by the Hamiltonian 

where Si = ~ , , p ~ i , n u n p E i , ~ , n i  -I = ni.? + ni.J,  and ni," = E[,Ei,o. The first two 
terms "present the standard t-J model acting in a projected Hilbert space without double 
occupancy, where the operator ci,o = c ~ , ~  ( I  - ni,-.,) annihilates (creates) a spin U electron 
in a Wannier state at site i. J measures the antiferromagnetic exchange interaction, and 
the transfer amplitude t is restricted to nearest-neighbour hopping precesses ( i j )  on an 
effective square lattice. The third and fourth terms take into account the coupling of a 
single dispersionless optical phonon branch to the electronic on-site energy and the elastic 
energy of a harmonic lattice, respectively. Those rems are treated within the adiabatic 
approximation. In the context of the copper oxides, the local Holstein coordinates {Ai] 
correspond to bond-parallel oxygen lattice displacements according to an in-plane oxygen 

-it, It, 
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breathing mode, i.e. the A; can be interpreted as an intemal optical degree of freedom of 
the effective lattice site i = (ix, iy) (see figure I@)). In this case, one has 

Ai = A; - A;-(l,ol +A: - A/-(o,I) (2) 

where we have rescaled ab:’ = A:” introducing in equation (1) the dimensionless EP 
coupling constant h = a 2 / K  ((Y and K denote the bare EP interaction strength and the 
restoring force constant, respectively). In the numerical work all energies and interaction 
constants are measured in units of the hopping integral t. The model ( I )  could be easily 
extended to the inclusion of out-of-plane oxygen breathing modes [ l l ,  121. Based on 
Hartree-Fock [ 171, slave boson [18,19] and quantum Monte Carlo [20] calculations, the EP 
coupling we adopt has been frequently used to investigate the instability of the Holstein- 
Hubbard model against static lattice distortions due to frozen-in phonon modes. However, 
the physics of the Holstein-Hubbard model is dominated by a (n, n) CDW instability (near 
half filling and at not too large Hubbard interaction U) [17,19]. In contrast, the CDW state 
becomes suppressed in the Holstein-t-J model at least at the low doping level 19,161. 
Therefore in our model the phonon system is mainly coupled to the doped charge carriers 
(holes) and as a result we expect the formation of local lattice distortions, such as hole- 
(bi)polarons. 

In order to investigate the ground-state properties of the Holstein-r-J model we adopt 
a modified Lanczos diagonalization technique [21] in the subspace of fixed hole number 
Nh = 1 (Nj, = 2) and minimal total S“ = Starting with a random 
configuration (A:y] we calculate via the exact ground-state function IW((Af”))) the local 
particle densities ( E ; )  (W((IAfY))IniIY((IAh.‘.Y))). According to Feynman’s theorem, 
a ~ ~ . . ~ ( W ( ~ A ~ y ) ) 1 7 i ~ W ( ( A ~ y ) ) )  = 0, we can solve in the next step the 2 N  self-consistency 
equations A:’ = h((ni) - (ni+(x,yl ) )  to determine the new set of [A:”). For typical cases 
studied, less than 50 iteration loops, with 5 to 100 Lanczos steps, are necessary to obtain 
the lattice distortions {A;”] and the ground-state energy E = E([Af”)) with a relative 
error less than Let us emphasize that the free variation of the effective ‘on-site 
potentials’ Ai in general breaks the translational symmetry of our system, i.e. for a rigorous 
diagonalization of the 7i matrix we have to work with an unsymmetrized basis set of many 
particle states. 

To explore the nature of the ground state we calculate the ground-state energy E, the 
local expectation values of spin ((Sf)) and charge ((ni)) density, the local lattice distortions 
Ai as well as the ‘averaged’ displacement A = E=, ]At/. The quantity A plays the role 
of an ‘order’ parameter separating hole-states with finite lattice distortion (A # 0) from 
uniform states (A = 0). In addition, we compute the (equal-time) spin correlation functions 
(SjSj) and the (Fourier-transformed) magnetic structure function 

(S’ = 0). 

to discuss the spin order of the system in more detail. As pointed out recently [16], the 
magnetic form factor, S(&) S(Q, -&) at Q = (n. n), can be used to characterize the 
self-trapping transition between ‘delocalized‘ and ‘localized’ hole states in the Holstein44 
model. 

Let us now present our numerical results for the ground-state phase diagram of the 
Holstein-t-J model. We start with the case of one hole, for which the phase diagram 
is  shown in figure 2 in a h versus 4/J diagram (because J can be related via J = 4/U 
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41J antiferromagnetic exchange coupling J .  

to a large-U expansion of the Hubbard model). We can distinguish two main regimes, 
referred to below as the self-trapped or 'localized' polaronic state and the 'delocalized' 
state, respectively. In the delocalized phase for small A the occurrence of finite lattice 
distortions depends on the symmetry of the ground state of the pure (A. = 0) t-J model. 
If this ground state carries a finite momentum, the lattice is forced into a structllre which 
is compatible with the non-trivial symmetry of the electronic wave function. Since in the 
physically most interesting regime of J the existence of a so-called pocket-like hole Fermi 
surface for the infinite system is still a matter of debate, this point is in not an academic 
one. The ground-state properties of the pure I-J model were studied by several authors 
for finite clusters up to 20 sites (cf. 121-231 and references therein). For the ten-site 
lattice, momentum IC and total spin S of the lowest-energy state depend on the magnitude 
of U = 4/5 [24]. 

Obviously, the delocalized state reflects the transitions between states with non-trivial 
IC values and an inhomogeneous electron density fiere A # 0 is possible) and a uniform 
phase, where IC = (0,O) or (n, n) and A = 0. The same qualitative behaviour was found 
for the 16- and 18-site lattices [16], but of course, the location of the transition to the 
homogeneous undistoited phase is strongly finite size dependent. 

In the delocalized state with finite A we observe at the largest possible distance two 
'hole sites' which correspond to the translational symmetry of the ground state (see table 1). 
In fact, the charge density fluctuations are rather small. The spin density, on the other hand, 
is mainly concentrated at the hole-sites: here we find for 4/J = 0.8 and h = 0.1 (Si )  = 0.408 
( i  = 1,6), whereas (Si )  = 0.023 at the electron sites (i # 1.6). The nearest-neighbour spin 
correlations ((SfS;) < 0) indicate antiferromagnetic short-range order V ( i j ) .  Increasing the 
EP coupling A at fixed J a self-trapping transition of the hole takes place. At Ac, E @ )  shows 
a discontinuity in slope and the order parameter A jumps by a finite amount reflecting the 
fact that the distribution of (ni). (S;), and (S:Sj) are different in both phases. As a result 
we found a numerical hysteresis, so one must carefully scan the J -A. plane to find the true 
ground state. For large A a strong lattice distottion can trap the hole at a single site. As can 
be seen from table 1 this leads to a substantial energy gain in Eel+,, therefore E is lowered 
despite the cost of elastic and kinetic energy. The variation of the (nj) shows that the hole 
trapping is accompanied by the occurrence of weak chargedensity oscillations on the other 
sites which are reminiscent of a (K, n) CDW. At the same time we observe a significant 



Phase diagram of the ZD Holstein-t-J model 3569 

Table 1. Total energy E .  ’order parameter’ A and local electron densities ( n i )  for the ground 
state of the ZD Holstein4-J model af J = 0.8. The results are given for one and WO holes on a 
m x m lattice with periodic boundary conditions at charaaeristic electron-phonon coupling 
srren@ h. The elecuon, elecuon-phonon larrice conufoutions 10 the ground-smre energy 
denoted by Ed, Ed-ph and Eph, respectively. 

Nh = 1 Nh = 2 

A = 0.1 A = 0.8 A =  0.1 A = 0.4 I = 0.8 

E -9.636475 -10.215938 -9.943565 -10.085228 -10.862362 
&I -9.617787 - 9.121160 -9.934587 - 9.776897 - 8.586801 
Eel-ph -0.037374 - 2.189556 -0.017956 - 0.616663 - 4551123 
EPh 0.018687 1.094778 0.008978 0.308331 2.275561 
A 0.034583 0.528328 0.029358 0.238035 1,079392 

(ni) i = 1 0.727084 0.141692 0.726424 0.382280 0.125380 
2 0.943229 0.967205 0.848930 0.878186 0.968655 
3 0.943229 0.997542 0.848930 0.787186 0.968655 
4 0.943229 0.967205 0.726424 0.382280 0.968655 
5 0.943229 0.997542 0.848930 0.878186 0.968655 
6 0.727084 0.999321 0.726424 0.983162 0.125380 
7 0.943229 0.997542 0.848930 0.878186 0.968655 
8 0.943229 0.967205 0.848930 0.878186 0.968655 
9 0.943229 0.997542 0.726424 0.983162 0.968655 

I O  0.943229 0.967205 0.848930 0.878186 0.968655 

change in the local spin correlations (S,?S;). Whereas the local moment on the hole site is 
coupled ferromagnetically to nearest-neighbour moments indicating the formation of a small 
ferromagnetic polaron, the antiferromagnetic correlations in the spin background become 
strongly enhanced. Note that now l(S~l-stB)l > l(Si-site)l. 

To discuss the effect of the electronic correlations on the self-trapping transition, we 
have considered the case of spinless fermions (S’ = S;,) as well. For the one-hole case 
this can be mimicked by setting J = 0 (Nagaoka limit). Here we obtain a much larger 
critical A, where the transition values Ac = 1.725 ( N  = IO) (cf. Ac = 1.750 ( N  = 18). 1.751 
(N = 20) [16]) indicate a rather small finite size dependence. In addition, it is interesting to 
note that the hole (or equivalently one electron) is not perfectly localized even at very large 
A. Away from the hole site, a small ‘rest’ of the hole (electron) density oscillates even in 
this limit in a way which corresponds to a (z, z) CDW [ 161. 

The phase diagram for the two-hole case is displayed in figure 3. First let us report 
the results at A = 0. Here, for 4/J < 19.88, the lowest energy state is S = 0 and fivefold 
degenerate, the momentum being one of the star of k = (0, O), (2~/5,4n/5). In the region 
4/J 2 19.88, the ground state is taken over by a state with S = 0 and IC = (0.0). At finite 
EP coupling, we can distinguish again between a phase where holes are delocalized, and 
a self-trapped state. Depending on the relative strengths of exchange interaction and EP 
coupling, the holes will be~trapped, for large enough A, as two single polarons or as one 
bipolaron. In the context of the Holstein-t-J model (remember that double occupancy is 
strictly forbidden), we use the term ‘bipolaron’ for the state where the two holes are ‘located’ 
at adjacent sites sharing the same lattice distortion. There is a naive argument suggesting 
that different types of self-trapped states will exist: two separate immobile polarons lose the 
antiferromagnetic exchange energy 25 on four bonds each, but can gain maximal trapping 
energy (- Eel+). On the other hand, two holes on neighbouring sites lose the exchange 
energy on only seven bonds together; however, one displacement (e.g. does not 
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Figure 3. Ground-state phase diagram of 
0 me Holstein-t-J model with two doped 

holes. 

contribute to Eel+ now. The net result, including the effect of delocalization energy, gives 
the phase boundary shown in figure 3. In the delocalized regime, we obtain at intermediate 
values of J a state with finite A. referred to as a ‘delocalized’ bipolaron. Here the hole 
density is mainly concentrated at four sites. where two sites are always nearest neighbours. 
The particle densities are given for the different regimes in table 1. The transitions between 
delocalized and localized states are of first order. At J = 0, the self-trapping msi t ion  
occurs at A, = 1.01, where the polaronic state carries maximal total spin S = Sma. For any 
finite value of J ,  however, the ground state has S = 0. 

Of special interest may be question of whether the EP coupling enhances the binding 
energy between the holes. We have therefore calculated the two-hole binding energy defined 
as usual by @(A) = El  + Eo - 2El (the lower indices denote the hole-numbersf. With 
the exception of a small extreme region ( J  >> 1 >> A, where the one-hole state becomes 
homogeneous), the hole binding in the Holstein-t-J model was weakened as A increases; 
e.g. at 4 / J  = 5, we found Eg(0) = -0.5378, Eg(0.05) = -0.5245, Eg(0.2) = -0.48979, 
and Eg(O.8)  = -0.2707. Of course, to make reasonable predictions concerning the tendency 
towards hole-pairing, one has to take into account the phonon dynamics. 

It is very instructive to investigate the behaviour of the magnetic structure factor S(Q),  
which for the pure I-J model exhibits a pronounced peak stmcture in the vicinity of the 
antiferromagnetic wave vector Q = (n, R) [Z]. In our finite-cluster calculation we are 
restricted to the allowed discrete q vectors of the lattice. In addition, the lack 
of full translational invariance means that S(q, q‘) will in general depend on two momenta 
Thus, we are only able to study the case Q = (n, n). Our results, presented in figure 4 
for S(n, n) and E @ ) ,  clearly indicate a different nature of the hole stat= in the various 
phases. Increasing A at fixed 4/J = 5, the smooth variation of S(x, z) in the delocalized 
‘phase’ is followed by a jump-like enhancement at the self-trapping transition and a much 
stronger variation in the bipolaronic state. At still larger EP coupling strength a further first- 
order transition to the self-trapped polaronic state takes place. Obviously, the hole-trapping 
favours an antiferromagnetic ordering of the spin background and vice versa. As mentioned 
above, depending on the ratio of J / A  a ground state with two well-separated small polarons 
or with a self-trapped bipolaron (i.e. a ‘hole-cluster’) gives the lowest energy (cf. table 1). 
This result should be contrasted with the situation for the Holstein-Hubbard model [12]. 
where strong EP coupling favours on-site bipolaronic CDW order. 

x 
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(inset) as a function of electmn- 
phonon coupling slrengih h a1 3 = 0.8. 
For further explanarion see text 

Summarizing, this paper aims to address the physics of electron-phonon coupling in 
strongly correlated electron systems via exact Lanczos diagonalization of the adiabatic 
Holstein-t-J model on a finite lattice near half filling. We have calculated for the first time 
the complete ground-state phase diagram as a function of EP coupling and antiferromagnetic 
exchange interaction strength. The Holstein-t-J model exhibits two competing ground 
states. For weak EP interaction one observes a rather ‘delocalized’ nature of the doped 
holes. Here the ground state reflects the symmetry of the pure 1-J model (but note that a 
finite A is possible). In contrast in the strong-coupling regime large local lattice distortions 
cause mainly ‘localized’ (self-trapped) hole states, i.e. in this limit the electronic properties 
are dominated by lattice effects. However, our results for spin and charge densities or 
for the magnetic structure factor indicate a subtle interplay between electron4ectron and 
EP interactions. In accordance with previous findings for the nearly half-filled Hotstein- 
Hubbard model [ 121, we demonstrated that antiferromagnetic spin correlations can strongly 
enhance the probability for hole-polaron or bipolaron formation. The physical reason for 
this tendency is the reduced effective quasiparticle-bandwidth for the charge carriers in the 
r-J model (i.e. a pre-existing self-localization). As a result, compared to the (uncorrelated) 
case of spinless fermions, the critical EP coupling strength for the first-order self-trapping 
msition becomes substantially weakened by the electronic spin interaction. In agreement 
with recent experimental [3-51 and theoretical evidence [6,7,9,11,12], our findings point 
towards the importance of polamnic effects at least in the normal phase of the doped 
cuprates. 

Acknowledgments 

We would like to acknowledge useful discussions with M Deeg, D Jhle, H-B Schiittler and 
v waas. 

References 

[ I ]  For a review, see Ballogg B 1991 Physicu B 169 7 
Emery V J 1991 Physicu B 169 17, and references therein 



3572 H Fehske et a1 

131 

I41 

f71 

Cohen R E, Pickeu W E ,  Boyer L L and Krakauer H 1988 Phys. Rev. Len. 60 817 
Cohen R E, Picket1 W E and Krakauer H 1989 Phys. Rev. Lea. 62 831; 1990 64 2575 
Lang M er a1 1992 Phys. Rev. Letr. 69 482 
Pintschovius L 1990 FesikOrperpmobleme: A d v ~ c e s  In Solld Srare Physlcs (Braunschweig: Vreweg) 
S h w a  R P. Rehn L E. Baldo P M and Lin J Z 1989 Phys. Rev. Leu 62 2869 
Haga T. Yamaya K, Ate Y, hjima Y and Hidaka Y 1990 Phys. Rev. B 41 826 
Toby B H, Egami T, Jorgensen J D and Subramanian M A 1990 Phys. Rev. Len. 64 2414 
Egami T er a1 1991 Elecrronic Structure and Mechanirmr of High Tempernrure Supercondunivity 

Kim Y H. Heeger A J. Acedo L. SNcky G and Wudl F 1987 Phys. Rev. B 36 7252 
Kim Y H. Foster C M. Heeger A J, Cox S and Stucky G 1988 Phys. Rev. B 38 6478 
Chakravarty B K. Feinterg D, Zheng H and Avignon M 1988 Solid Srure Commun. 64 1147 
Alexandrov A S 1988 Phys. Rev. B 38 925 
Ranninger J 1991 2. Phys. B 84 1147 
Verbis1 G, Peeters F M and Devreese J T 1991 Phys. Scr. T 39 66 
Cataudella V, ladonsi G and Ninno D 1992 Ewophys. Len. 17 709 
Mustre de Leon J, Bastistif I, Bishop A R, Conradson S D and TNgman S A 1992 Phys. Rev. L e a  68 3236 
Emin D and Hillery M S 1989 Phys. Rev. Lerr. 62 1544 
Emin D 1992 Phvs. Rev. B 45 5525: 1992 Phvsics of Hinh-TemDerarure Sunerconducors ed S Maekawa 

ed J Ashkenazi and G Vezmli (New York: Plenum) 

~ - -  
and M Sat0 (Berlin: Springer) 

Anisimov V I, Korotin M A. Zaanen J and Andersen 0 K 1992 Phvs. Rev. Len. MI 345 
Das A N. KoNor I and Ray D K 1990 Physicu C 170 215 
Das A N. Konior 1, Ray D K and Olei A M I991 Phys. Rev. B 44 7680 
Rice T M 1990 J .  Less-Common Mer. 164-165 1439 
Schiiuler H. Zhong J and Fedro A J 1991 Physicn C 185-189 

[I21 Zhong J and Schihler H-B 1992 Phys. Rev. &rr. 69 1600 
[I31 Emin D 1973 A h .  Phys. I2 57 

Sumi H and Sumi A 1989 Solid Srare Commun. 71 789 
Tsuda N. Nasu K. Yanm A and Siratori K 1990 Elecrronic Conducrion in Oxides (Berlin: Springer) 

I141 Batistif I, Gammel I T and Bishop A R 1992 Phys. Rev, B 44 13228 
R6der H, Bishop A R and Gammel J T 1993 Phys. Rev. Lerr. accepted 

I151 Holstein T 1959 Ann. Phys. 8 343 
1161 R6der H. Fehske H and Biilmer 1993 Phys. Rev. B 46 accepted 
I171 Prtlre A and Rice T M 1986 J. Phys. C: Solid Srore Phys. 19 1365 

PrelovSek P. Rice T M and Zhang F C 1987 1. Phys. C:  Solid Srore Phys. 20 L229 
I181 Schmeltzer D and Bishop A R 1990 Europhys. Lerl. 12 369 
[I91 Fehske H. Deeg M and Btitmer H 1992 Phys. Rev. B 46 3713 

Deeg U Fehske H and Bilttner H 1992 2. Phys. B 88 283; 1993 91 31 
I201 Muramatsu A and H a d e  W 1988 Physic0 C 153 229 
I211 Fehske H, Waas V. Rmer H and Biitmer H 1991 Phys. Rev. B 44 8473 
1221 Waas V 1992 PhD Thesis University of Bayreuth 
1231 Dagoflo E, More0 A, Onolani F, Poilblanc D and Riera J 1992 Phys. Rev. B 45 10741 
I241 k = (0.0). S = flu < 1.181; k is one of the star of k = (3n/5.n/5). S = f11.18 6 U < 15.251: k is 

one Of Star  Of k = (2n/5,4n/5). S = iI15.26 < U 6 21.771; k = (n,n). S = $121.78 Q U Q 27.131; 
k = (08). S = 512I27.14 4 U 4 28.961: and k = (O,O), S = 912 for U larger than the Nagaoka value 
UN = 28.97. 

1251 Dopf G. Muramatsu A and M e  W 1992 Europhys. Len. 17 475 


